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Abstract: A suitable Neuro-Fuzzy model is presented for estimating sequences of monthly 
clearness index ( )Kt  in isolated sites based only on geographical coordinates. The 

clearness index ( )Kt corresponds to the solar radiation data (H) divided by the 
corresponding extraterrestrial data (H0). Solar radiation data is the most important 
parameters for sizing photovoltaic (PV) system. The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) model is trained by using the Multilayer Perceptron (MLP) based on the 
Fuzzy Logic (FL) rule. The inputs of the network are the latitude, longitude, and altitude, 
while the outputs are the 12-values of Kt , where these data have been collected over 60 

locations in Algeria. The Kt  corresponding of 56 sites have been used for training the 

proposed ANFIS. However, the Kt  relative to 4-sites have been selected randomly from 
the database in order to test and validate the proposed ANFIS model. The performance of 
the approach in the prediction Kt is favorably compared to the measured values, with a 
Root Mean Square Error (RMSE) between 0.0215 and 0.0235, and the Mean Relative 
Error (MRE) not exceeding 2.2%. In addition, a comparison between the results obtained 
by the ANFIS model and other Artificial Neural Networks (ANN) is presented in order to 
show the performance of the model. An example of sizing PV system is presented. Although 
this technique has been applied for Algerian locations, but can be generalized in any 
geographical location in the world. 
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1. INTRODUCTION 
 

The clearness index ( ) is defined as the ratio between total H and the 
H

tK
0. The amount of global solar radiation and its temporal distribution are the 

primary variables for designing solar energy systems. Knowledge of these 
parameters is required for the prediction of system efficiency of a possible solar 
energy system at a particular location. It is the most important parameter for sizing 
of stand-alone PV systems.1–4 The application of PV system can be used for 
electrification of villages in rural areas, telecommunications, refrigeration, water 
pumping (particularly in agricultural irrigation), water heating and, etc. Several 
studies in literature have been developed in order to estimate these data (H) based 
on statistical approach and the ANN techniques.5–9 The application of the wavelet 
analysis with ANNs has been proposed in order to predict the total H in the 
missing period,10,11 good accurate results have been obtained with a correlation 
coefficient of 97%. Therefore, these techniques are not adequate for isolated 
locations, but it is a very good proposition in the missing data period case. The 
proposed method12 can solve this problem but it needs the availability of mean 
temperature and sunshine duration. A critical study of the prediction global H 
from sunshine duration is proposed in Yorukoglu and Celik.13 The authors14 have 
proposed the use of Radial Basis Function Network (RBFN) in order to estimate 
the monthly H for 41 Saudi Arabia sites, the results for testing obtained were 
within 16% (MRE), and the same principle is applied for Spain and Turkey 
locations based on the MLP for developing the solar radiation map.15,16 A more 
recent study has been presented.17 In this study, a hybrid model based on ANN 
(MLP) and Matrices Transition Markov (MTM), has been developed in order to 
estimate the total H in isolated sites for Algeria locations. The model is called the 
MLP-MTM approach and the correlation coefficient obtained ranges between 90% 
to 92%.   

 
The major objective of this paper is to investigate the potential of an 

ANFIS system in the modeling and prediction of the  tK , in isolated sites and to 
assess its performance relative to ANNs, and then for improving the results 
obtained in an earlier work.17 In this work, we have used the 12-values of tK  in 
the output of the model instead of the average H as often used. The data used in 
this study was collected from meteorological stations of Algeria.  
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2. DATA SET 
 
The database used in this study consists of 60 × 12 monthly solar radiation values 
collected from the National Office of Meteorology (NOM) in Algeria. Each site 
contains 12-values corresponding to monthly radiation data. The database has 
been normalized by dividing each monthly H to the H0, to obtain a database of             
60 × 12 tK . Figures 1(a) and (b) show the monthly total solar radiation and tK  
data for some sites. Table 1 presents the database of average total H and Kt used in 
the simulation.  
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Figure 1  (a):  Monthly H (Wh/m²/day), and (b) Monthly Kt for four sites. 

 



 

                 Table 1: Database of average total H and Kt. 
N° ° Sites ° m H 

Wh/m2/day 
Kt

01 36.43N 3.15E 25 4.6884 0.5718 
02 35.38 N 3.70E 99 4.6468 0.5599 
03 31.38N   2.1E 806 5.8516 0.6768 
04 22.47N 5.31E 1378 6.4221 0.6913 
05 36.50N 7.49E 4 4.377 0.534 
06 24.33N 9.28E 1054 6.6096 0.7207 
07 32.23N 3.49E 450 5.7866 0.6748 
08 30.34N 2.54E 398 6.1417 0.7034 
09 32.45N 0.90E 1072 5.5766 0.6517 
10 33.07N 6.04E 69 5.6812 0.6681 
11 34.48N 5.44E 81 5.3009 0.5708 
12 34.41N 3.15E 1144 5.2566 0.6273 
13 33.46N 2.56E 767 5.5118 0.6572 
14 31.57N 5.24E 141 5.7116 0.6743 
15 27.53N 1.70E 264 6.3545 0.7363 
16 27.40N 8.08E 420 6.3151 0.7058 
17 27.12N 2.28E 243 6.1814 0.6901 
18 30.08N 2.10E 498 6.0168 0.6702 
19 26.30N 8.26E 559 5.8433 0.7125 
20 36.52N 6.57E 9 4.5705 0.5058 
21 36.45N 5.05E 92 4.0668 0.4963 
22 36.17N 6.37E 687 4.7917 0.5843 
23 36.11N 5.25E 1081 5.207 0.6329 
24 35.26N 8.08E 816 4.8053 0.5837 
25 35.11N 1.80E 486 4.7022 0.5659 
26 33.22N 6.53E 70 5.4549 0.6554 
27 28.38N 9.38E 562 5.8828 0.6929 
28 34.56N 1.19E 810 4.9304 0.555 
29 26.58N 1.05E 290 5.7767 0.6899 
30 24.36N 1.14E 347 6.3082 0.6996 
31 33.41N 1.01E 1305 5.5333 0.6032 

 

                                                                                               (continue to next page) 



       
 

Table 1: (continued) 
 

N° ° Sites ° m H 
Wh/m2/day 

Kt

32 31.40N 6.09E 143 5.7445 0.6779 
33 29.15N 1.40E 284 6.1266 0.7087 
34 35.33N 6.11E 1040 5.1917 0.5883 
35 36.19N 2.14E 750 4.8864 0.5885 
36 36.10N 1.21E 112 4.6563 0.5661 
37 28.06N 6.49E 381 5.9614 0.7241 
38 36.42N 4.30E 9 4.2838 0.4809 
39 36.30N 8.23E 4 4.309 0.5257 
40 35.17N 1.20E 99 4.6084 0.5553 
41 20.10N 4.10E 1351 6.2394 0.7584 
42 24.21N 10.0E 1134 6.2365 0.7142 
43 23.21N 2.12E 704 6.4563 0.7611 
44 29.25N 3.00E 561 6.9742 0.7854 
45 29.38N 7.00E 490 6.4531 0.7652 
46 28.17N 2.12E 346 6.5369 0.7584 
47 26.12N 1.00E 275 5.8356 0.6568 
48 30.20N 6.14E 561 6.2565 0.7281 
49 31.25N 8.21E 418 5.8365 0.6251 
50 30.45N 2.01E 561 6.0662 0.6982 
51 33.24N 1.02E 490 6.2254 0.7014 
52 32.10N 2.00E 471 5.7848 0.5984 
53 32.25N 2.57E 1062 4.9996 0.5114 
54 35.42N 7.00E 991 5.1155 0.6025 
55 36.74N 3.01E 49 4.5921 0.5145 
56 27.41N 2.14E 120 5.9851 0.6251 
57 28.35N 5.00E 458 6.3521 0.6351 
58 35.00N 1.20E 994 5.9461 0.6581 
59 28.70N 1.58E 350 5.8284 0.5896 
60 21.50N 3.50E 1151 7.1454 0.7584 
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3. AN ANFIS 
 

The Neuro-fuzzy modeling18 involves a way of applying various learning 
techniques developed in the neural network literature to fuzzy modeling or to a 
fuzzy inference system (FIS). The basic structure of a FIS consists of three 
conceptual components: a rule base, which contains a selection of fuzzy rules; a 
database, which defines the membership functions (MF) used in the fuzzy rules; 
and a reasoning mechanism, which performs the inference procedure upon the 
rules to derive an output (Fig. 2). In a situation in which both data and knowledge 
of the underlying system are available, a neuro-fuzzy approach is able to exploit 
sources based on network and FL models. The neuro-fuzzy system used here is the 
ANFIS. The system is an adaptive network functionally equivalent to a first-order 
Sugeno FIS. The ANFIS uses a hybrid-learning rule combining back-propagation, 
gradient-descent, and a least-squares algorithm to identify and optimize the 
Sugeno system’s parameters. The equivalent ANFIS architecture of a first-order 
Sugeno fuzzy model with two rules is shown in Figure 3. The model has five 
layers and every node in a given layer has a similar function. The fuzzy IF-THEN 
rule set, in which the outputs are linear combinations of their inputs, is 
 

Rule 1: if x is A1 and y is B1 then f1: = p1x+q1x+r1

Rule 2: if x is A2 and y is B2 then f2: = p2x+q2x+r2 
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Figure 2: Fuzzy inference system. 
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Figure 3:  Architecture of an ANFIS equivalent to a first-order Sugeno fuzzy 
model with two inputs and two rules. 

 
Layer 1, consists of adaptive nodes that generate membership grades of linguistic 
labels based upon premise parameters, using any appropriate parameterized MF 
such as the generalized bell function: 

               

 

                 

 
where output O1,i is the output of the ith node in the first layer, is the input to i, Ai 
node , is a linguistic label (“small,” “large,” etc.) from fuzzy set A =(A1, A2, B1, B2) 
associated with the node, and {ai, bi, ci} is the premise parameter set used to adjust 
the shape of the MF. The nodes in layer 2 are fixed nodes designated ∏, which 
represent the firing strength of each rule. The output of each node is the fuzzy 
AND (product, or MIN) of all the input signals. 
 

2, ( ) ( )i i i iO w A x B y= = μ μ  (2)

                                           
The outputs of layer 3 are the normalized firing strengths. Each node is a fixed 
rule labelled N. The output of the ith node is the ratio of the ith rule’s firing strength 
to the sum of all the rules firing strengths: 

21
,3 ww

w
wO i

ii +
==                                  (3) 
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The adaptive nodes in layer 4 calculate the rule outputs based upon consequent 
parameters using the function: 

                                     
4, ( )i i i i i i iO w f w p x q y r= = + +    (4)

                                        
where wi is a normalized firing strength from layer 3, and (pi, qi ,ri) is the 
consequent parameter set of the node. The single node in layer 5, labelled ∑, 
calculates the overall ANFIS output from the sum of the node inputs: 
                                                                                

∑
∑

∑ ==

i
i

i
ii

i
iii w

fw
fwO ,5  

 (5)

Training the ANFIS is a two-pass process over a number of epochs. 
During each epoch, the node outputs are calculated up to layer 4. At layer 5, the 
consequent parameters are calculated using a least-squares regression method. The 
output of the ANFIS is calculated and the errors propagated back through the 
layers in order to determine the premise parameter (layer 1) updates. 
 
 
4. MODEL DEVELOPMENT AND TESTING 
 

The described ANFIS model is adopted and used for predicting the tK in 
isolated sites. The block diagram of the proposed model is presented in Figures 
4(a) and (b). The inputs of the model are the geographical coordinates of the site 
(altitude, longitude and latitude), while the outputs of the model are the 12-values 
corresponding to the tK . The input and the output of the model are fuzzified 
before used.  
 

Figure 5 shows the initial MF for each input data of the ANFIS. When the 
data are fuzzified into class, a total of 56-patterns have been used for training the 
model and 4-patterns have been used for testing the model. Therefore the testing 
sites are selected randomly.  

 
 Figure 6 illustrates the evolution of the RMSE for the different networks 
[MLPN, RBFN, Recurrent Neural Network (RNN)] and the proposed ANFIS. In 
order to test the performance of the model, we have plotted a cumulative function 

between measured tK and predicted monthly clearness index ( tK̂ ) as presented in 
Figure 7.  From observation of these curves, we note that there is no important 
difference between measured and predicted tK  for each site. Table 2 summarizes
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Figure 4(a): Block diagram of the developed model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4(b): The proposed ANFIS-based prediction. 
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Figure 5: The initial division of input and output spaces into five fuzzy regions 

and their corresponding Gaussian MF. 
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Figure 6: RMSE for the different ANNs used in this simulation and the proposed 

ANFIS. 
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Figure 7: Cumulative function for four tested sites. 
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the mean, variance, ANFIS Kolmogorov-Test (KS) and RMSE between measured   
K̂t  and K̂t . Generally from the statistical point of view, the results are very 
satisfactory.   
 

In order to assess its performance relative to different ANN architectures 
(MLPN, RBFN and RNN) we have plotted the estimated K̂t by the different ANN 
and the proposed ANFIS (Fig. 8) for one selected site. According to this curve, we 
remark that the ANFIS and the RNN gave good results compared to those 
obtained by MLPN and RBFN.  

 
Table 2: Statistical tests. 

Sites (geographical 
coordinates) 

(°,’) (°,’)   m 

Measured 
Mean tK  

Predicted 

Mean ˆ
tK  

Variance 
σ 

KS RMSE 

27,12
N   

2.28E 243 0.758 0.721 0.0391 0.068 0.0214 

36,17
N       

6.37E 687 0.463 0.484 0.0418 0.062 0.0221 

35,17
N       

1.20E 99 0.509 0.524 0.0387 0.065 0.0245 

35,33
N       

6.11E 1040 0.557 0.548 0.0374 0.059 0.0235 
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Figure 8: Comparison between different ANN architectures and the proposed 

ANFIS predicting K̂t . 
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Table 3 presents a comparison for the MRE, RMSE and number of 
iteration, between different ANNs structures and the ANFIS-model developed in 
this work. From the comparison, it is clear that the ANFIS-model developed in 
this work has the best convergence time and of the number iteration of 920 and the 
MRE of 2.2%. 

 
Table 3: MRE between the different ANNs and the proposed ANFIS. 

 

Neural network architecture Predicted K̂t  Number of 
iterations 

MRE 
(%) 

MLPN 0.5526 3000 8.1 
RBFN 0.5542 1700 6.3 
RNN 0.5556 1030 3.2 
ANFIS-model developed in this work 0.5561 920 2.2 
Measured Kt 0.5571   

 
 
5. APPLICATION FOR SIZING PV SYSTEMS 

 
In this section, we present an example for sizing PV system based on the 

predicted data proposed by our ANFIS model. Firstly tK̂  corresponding to 4- 
locations have been used for generating sequences of daily total H, based on the 
MTM method proposed by Aguiar et al.5 (Appendix 117). Several models have 
been developed in the literature in order to find the optimal sizing of PV system 
based on numerical (Appendix 217), analytical and hybrid approaches.18–23 The 
construction of a sizing curve based on the Loss Load Probability (LLP) requires 
the modeling of PV system operation over substantial periods of time. Time series 
of solar radiation then cannot come directly from observation but need to be 
reproduced ‘‘synthetically’’ based on an algorithm which is faithful to the solar 
radiation statistics. The relationship between the LLP values and the perceived 
reliability requirements of the user are then indirect, although generally accepted 
correspondence exist for most standard applications.3,19 Secondly, based on the 
numerical method19 and the proposed hybrid approach (ANN-GA),24 we can 
determine the optimal sizing surface of PV-generator (APV) and storage batteries 
(CU) in order to satisfy a given (L) consumption, for each 4-locations used in this 
simulation. A 10-year daily H has been generated based on the ANFIS-model 
proposed as shown in Figure 9. 
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Figure 9:  Sequences of daily H obtained from the K̂t  based on the proposed 

ANFIS and MTM approach corresponding to 10-years. 
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Figures 10(a), (b), (c) and (d) summarize the histogram and the MRE of 
the sizing parameters based on measured daily H and estimated by the different 
ANN architectures and the proposed ANFIS.  
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Fig.10.a. Comparison between actual PV-array array measured and 

estimated by the different ANN and the proposed ANFIS 
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Figure 10(a):  Comparison between actual PV-array measured and estimated by the
different ANN and the proposed ANFIS. 
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According to these curve, we observe that there is a good correlation 

obtained by all ANN models used. However, the proposed method present more 
satisfactory results compared to the reported ANN.17 In addition, the MRE does 
not exceed 0.2%. 
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Figure 10(c): Comparison between actual useful capacity measured and   
estimated by the different ANN and the proposed ANFIS. 

Figure 10(d): MRE 
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6. CONCLUSION 
 

This paper reports a proposal on an ANFIS for predicting Kt in isolated 
locations. The proposed model has been applied and tested in Algerian locations. 
The results obtained allow us to conclude that the ANFIS is effective compared to 
the reported ANN architectures (MLPN, RBFN and RNN). The advantage of the 
model is that it can estimate Kt from only the geographical coordinates of the site, 
without having to resort the traditional ambient parameters such as: mean 
temperature, sunshine duration, wind speed, and etc. In addition the convergence 
time and the MRE are improved. Thus, having obtained the Kt based on the MTM 
method, the ANFIS-model can generate sequences of daily solar radiation over an 
extended period. 

 
The number of sites used together with their geographical range allow us 

to conclude that the proposed ANFIS-model is generally valid for estimating 
sequences of daily total H in latitudes ranging from 21° 0’N to 36° 5’N and the 
longitudes ranging from 1° 0’ to 9° 5’. These data is required for sizing of the PV 
system.  The application of sizing PV systems shows clearly the advantage of the 
proposed model to the alternative ANN architectures.  

 
The results have been obtained for the Algerian locations, but the 

methodology can be generalized for use in other parts of the world. In addition, 
the proposed technique can be extended to any meteorological data, e.g. wind, 
humidity, temperature, and etc.  
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Appendix 1  

MTM procedure for generating sequences of daily clearness index 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Appendix 2  

Numerical procedure for construction LLP-curve 
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	Abstract: A suitable Neuro-Fuzzy model is presented for estimating sequences of monthly clearness index   in isolated sites based only on geographical coordinates. The clearness index  corresponds to the solar radiation data (H) divided by the corresponding extraterrestrial data (H0). Solar radiation data is the most important parameters for sizing photovoltaic (PV) system. The Adaptive Neuro-Fuzzy Inference System (ANFIS) model is trained by using the Multilayer Perceptron (MLP) based on the Fuzzy Logic (FL) rule. The inputs of the network are the latitude, longitude, and altitude, while the outputs are the 12-values of  , where these data have been collected over 60 locations in Algeria. The   corresponding of 56 sites have been used for training the proposed ANFIS. However, the   relative to 4-sites have been selected randomly from the database in order to test and validate the proposed ANFIS model. The performance of the approach in the prediction is favorably compared to the measured values, with a Root Mean Square Error (RMSE) between 0.0215 and 0.0235, and the Mean Relative Error (MRE) not exceeding 2.2%. In addition, a comparison between the results obtained by the ANFIS model and other Artificial Neural Networks (ANN) is presented in order to show the performance of the model. An example of sizing PV system is presented. Although this technique has been applied for Algerian locations, but can be generalized in any geographical location in the world. 

